Synthesis of 4-Aminopyrimidines from 1,2,4-Oxadiazoles. Part 4.' A Novel Heterocyclic Rearrangement: Formation of 4-Hydroximinohexahydropyrimidines from 3-(2-Aminoethyl)-4,5-dihydro-1,2,4-oxadiazoles

Dezsö Korbonits,**a Erzsébet Tóbiás-Héja, ${ }^{a}$ Kálmán Simon, ${ }^{a}$ György Krámer ${ }^{a}$ and Pál Kolonits ${ }^{\text {b }}$
${ }^{a}$ Chinoin Pharmaceutical and Chemical Works, H-1325 Budapest, POB 110, Hungary
${ }^{\text {b }}$ Institute of Organic Chemistry, Technical University H-1111 Budapest, Hungary

The 4,5-dihydro derivatives of 3-(2-aminoethyl)-5-substituted-1,2,4-oxadiazoles 1 have been prepared. These derivatives 8 a-d rearrange readily, but in contrast to compounds 1, not to pyrazoles, but to 2-aryl-1-benzyl-4-hydroximinohexahydropyrimidines 9a-d. Studies on the mechanism of the $1 \longrightarrow 2$ azole-azole, and the novel $8 \longrightarrow 9$ azole-azine, rearrangements revealed that the site of the side chain nitrogen attack is controlled by the presence or absence of a delocalized π-electron system in the starting azole ring. Compound 9a and benzaldehyde gave cis- and trans-6-benzyl-3,5-diphenyl-5,6,7,8-tetrahydro-3H-[1,2,4]-oxadiazolo[4,3-c]pyrimidines 16 and 17, respectively. The structures of 9a, 16 and 17 were confirmed by X-ray crystallography.

We have previously reported the rearrangement of oxadiazoles of types 1 and 3, and their congeners, to the pyrazoles 2 and 4 (Scheme 1). For compounds 1 ($\mathrm{R}^{1}=$ alkyl or arylalkyl) this ring transformation proceeds spontaneously in solution at room temperature. ${ }^{2}$

Scheme 1
While the rearrangement $3 \longrightarrow 4$ is in accord with the second scheme suggested by Boulton and Katritzky, ${ }^{3}$ ring transformation $\mathbf{1 \longrightarrow \mathbf { 2 }}$ is in conflict with this concept due to the saturation of the side chain. We found that in the latter case the length of the side chain is crucial, ${ }^{4}$ whereas its saturation or unsaturation is not of basic importance for the success of the transformation \dagger and we therefore proposed an extension of the scheme to azoles bearing a saturated side chain. ${ }^{2 b-d}$

In contrast to a π-bond in the side chain, delocalization of the π-electron system of the azole ring plays an important role, as shown by kinetic and computational studies. ${ }^{2 a-d}$ In order to give more support to this proposition we set out to prepare the 4,5-dihydro-derivatives of oxadiazoles 1 with side chains containing substituents of high nucleophilicity, e.g. alkylamino or arylalkylamino groups, and to examine their tendency to rearrange.

In this paper we describe these studies, including a novel azole-azine rearrangement, which is basically different from the Boulton-Katritzky scheme.

For the preparation of model compounds, reductive transformation of the recently recognized ${ }^{6}$ triple ring-chain tautomeric system $(5 \rightleftharpoons 6 \rightleftharpoons 7)$ seemed to be promising (Scheme 2).

[^0]

Scheme 2

The $\mathrm{N}-\mathrm{O}$ bond in 1,2,4-oxadiazoles is prone to reductive cleavage, ${ }^{7}$ but we hoped that applying the selective method used previously for the azomethine bond in iminoethyloxadiazoles ${ }^{2 a, b}$ would also enable selective saturation of the $\mathrm{C}=\mathrm{N}$ bond in iminoethyloxadiazolines. Although from solutions containing the above mentioned triple equilibrium mixture the readily crystallizing cis-oxadiazolo[4,3-c]pyrimidines 5a-d ${ }^{6}$ could be isolated when $\mathrm{R}=$ phenyl derivative, it could be anticipated that on reduction the equilibrium would be shifted towards the imines 6 and thus the target aminoethyloxadiazoles 8 could be obtained. In fact on treating the oxadiazolopyrimidine $5 \mathbf{a}$ in methanol at $10-15^{\circ} \mathrm{C}$ with sodium borohydride and working up the reaction mixture immediately, we obtained the required oxadiazoline 8a, formed evidently by reduction of the side chain of the open-chain tautomer $\mathbf{6 a}$.

In contrast, when the reducing agent was added at $20-25^{\circ} \mathrm{C}$ and stirring was continued for an additional hour the isomeric 1-benzyl-4-hydroximino-2-phenylhexahydropyrimidine 9 a was isolated in 92% yield. There is compelling evidence that this unexpected transformation involves a ring transformation of oxadiazoline 8a, the primary product of the reaction. For example in methanolic solution 8a rearranges at room temperature to 9 a within one day. Although basic catalysts, e.g. sodium

Fig. 1 PLUTO diagram of 9a

Table $1 \mathrm{CNDO} / 2$ net charges for the oxadiazole ring of $1\left(\mathrm{R}^{1}=\mathrm{Me}\right.$, $\left.\mathrm{R}^{2}=\mathrm{Ph}\right)$ and $8\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}\right)$

Ring atom labels	Charges in a.u. for 1	Charges in a.u. for 8
$\mathrm{O}(1)$	-0.173	-0.209
$\mathrm{~N}(2)$	-0.128	-0.114
$\mathrm{C}(3)$	0.212	0.207
$\mathrm{~N}(4)$	-0.262	-0.191
$\mathrm{C}(5)$	0.283	0.254

Fig. 2 Bond lengths (\AA) of the 3,5-disubstituted-1,2,4-oxadiazole ring $1\left(\mathbf{R}^{1}=R^{2}=P h\right.$) taken from ref. $2 d$, bond lengths of the 3,5 -disubstituted-4,5-dihydro-1,2,4-oxadiazole ring $6 \quad\left(R^{1}=R^{2}=\right.$ $\mathrm{PhCH}=\mathrm{CH}$) taken from ref. 6
methoxide or the reducing agent itself highly accelerate the reaction, they are not indispensable. Isomerization also proceeds albeit at a slower rate in aprotic media, such as chloroform, or in the melt.

Structures 8a and 9a are fully supported by analytical data and by comparison of their spectra with those of known analogues. ${ }^{8}$

Apart from NH bands there are no characteristic features in the IR spectrum of 8 a (recorded in KBr), however the spectrum of 9a exhibits a strong band at $1658 \mathrm{~cm}^{-1}$ characteristic for cyclic amide oximes and strong absorption at $900 \mathrm{~cm}^{-1}$ for the $=\mathrm{N}-\mathrm{O}$-bond.

The ${ }^{1} \mathrm{H}$ NMR spectrum of a freshly prepared solution of 8 a in CDCl_{3} is in accord with the dihydro-oxadiazole structure, however after a few minutes peaks for the hydroximinopyrimidine 9a start to emerge.

Transformation of the $\mathrm{N}-\mathrm{CH}-\mathrm{O}$ group in 8 a into $\mathrm{N}-\mathrm{CH}-\mathrm{N}$ in 9 a results in a substantial upfield shift of the corresponding proton signal ($6.34 \longrightarrow 4.79 \mathrm{ppm}$). In addition the benzyl- CH_{2} singlet in 8a becomes an AB quartet owing to the diastereotopic nature of these protons in 9a. After 2 h in CDCl_{3} the 8a:9a ratio was 2:1. The structure of 9 a was confirmed by X -ray diffraction (Fig. 1).

By changing the conditions, oxadiazolines $\mathbf{8 b - d}$ or the hydroximinopyrimidines $9 \mathbf{b}-\mathrm{d}$ can be selectively prepared from the oxadiazolo[4,3-c] pyrimidines $\mathbf{5 b}-\mathrm{d}$, but phenyl substituents greatly influence the rate of the process. The electron-releasing methoxy group accelerates the rearrangement $8 \longrightarrow 9$, and the electronegative chlorine atom retards it. Accordingly transformation of 5 b into 8 b required a much lower $\left(3-5^{\circ} \mathrm{C}\right)$ reduction temperature than did the transformation $\mathbf{5 a} \longrightarrow \mathbf{8 a}$, otherwise the main product was the pyrimidine $9 \mathbf{b}$. While the 4 -chlorophenyl derivative 5 c behaved almost as the phenyl analogue, the 2-chlorophenyl compound required both higher temperature and more reducing agent for reduction to 8 d. Transformation into the pyrimidine 9 d took 24 h .

Substituent effects can be observed in the broad spread of isomerization rates in CDCl_{3} at $20^{\circ} \mathrm{C}$. Signals of the starting materials vanished in 12 days for $8 \mathbf{a}$, in 4 days for 8 b , in 30 days for 8 c , while for 8 d the signals were only reduced to 10% after 42 days. ${ }^{*}$

As is apparent from Scheme 3, the azole-azine rearrangement $8 \longrightarrow 9$ is basically different from the azole-azole ring transformation depicted in Scheme 1. According to our earlier findings, ${ }^{2 a, d}$ in the case of azoles 1 , due to participation of the delocalized π-electron system, the effect of the $\mathrm{C}(5)$ substituent is realized on the $\mathrm{N}(2)$ atom. Therefore, although $\mathrm{C}(5)$ is the most positive in the ring (Table 1), nucleophilic attack of the side chain nitrogen occurs at the $\mathrm{N}(2)$. However, attack against the $\mathrm{C}(5)$ atom and formation of the hypothetical 4-hydroximinopyridimidine 10 cannot be totally precluded. \dagger

In the competition between the $\mathrm{N}(2)$ and $\mathrm{C}(5)$ atom, an important decisive factor is on one hand the fact that in the 1,2,4-oxadiazole ring the $\mathrm{O}(1)-\mathrm{N}(2)$ bond is the longest (Fig. 2), so the opening of the $\mathrm{N}-\mathrm{O}$ bond is understandable, and on the other hand formation of the very stable amide group favours formation of acylaminopyrazoles 2 . In the case of compounds 8 lacking the delocalized π-electron system it is indeed the most positive $C(5)$ atom which is involved in bond formation with the amino nitrogen of the side chain giving, with concomitant cleavage of the $\mathrm{C}-\mathrm{O}$ bond, a relatively stable semicyclic amide oxime 9 . Note that in the 4,5 -dihydro-1,2,4-oxadiazole ring the $\mathrm{O}(1)-\mathrm{C}(5)$ bond $(1.42 \AA)$ is significantly longer than that in the 1,2,4-oxadiazole ring ($1.34 \AA$) (Fig. 2).

Formation of compounds 9 permits another interesting comparison. With iminoethyloxadiazolines $\mathbf{6}$ it is the $\mathrm{C}=\mathrm{N}$ bond of the side chain which is reduced by sodium borohydride to give 8 (Scheme 2), while the oxadiazoline ring remains unchanged, whereas, as we have already reported, ${ }^{7}$ with oxadiazoles of type 3 the $\mathrm{N}-\mathrm{O}$ bond of the ring is cleaved on catalytic hydrogenolysis and acylamidines $\mathbf{1 1}$ are obtained which can be readily converted into pyrimidines 12 (Scheme 3). A common feature of both methods of forming a pyrimidine ring $(8 \longrightarrow 9$ and $11 \longrightarrow 12)$ is that the nitrogen atom of the side chain is establishing a bond with $C(5)$ of the original oxadiazole ring in such a way that a $\mathrm{C}-\mathrm{O}$ bond is cleaved.

Synthesis of compounds 9 was helpful in clearing up an interesting problem concerning the direction of a reaction. The parent compounds $5 \mathbf{a}-\mathbf{d}$ of oxadiazolines $\mathbf{8 a - d}$ were prepared ${ }^{6}$ by heating 13 and the tautomers 14 , respectively, with aldehydes 15 (Scheme 4). In all four instances only cis-oxadiazolo[4,3-c]pyrimidines 5 could be isolated from the reaction mixture but as mentioned earlier, according to NMR spectroscopy, in

[^1]

Scheme 3

15
a $R=P h$
b $\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
c $\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
d $\mathrm{R}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$

14

Scheme 4
solution a triple tautomeric equilibrium $(5 \rightleftharpoons 6 \rightleftharpoons 7)$ is established. Here the question arises whether, in the reaction of 15 with the tautomers 13 and 14 , formation of cis- 5 is a primary event or whether the other tautomers are also formed and the exclusive isolation of 5 is due to its higher thermodynamic stability in the solid state.
Since in compounds 9 no mobile hydrogen is attached to $N(1)$ we expected that its reaction with aldehydes would give

Fig. 3 PLUTO diagram of 16
oxadiazolo [4,3-c]pyrimidines in which tautomerization is impossible. In fact the NMR spectrum of the reaction product of 9 a and benzaldehyde indicated the presence of the bicyclic products 16 and 17 in a $1: 1$ ratio. These were then separated by chromatography and identified by X-ray crystallography as the cis and trans stereoisomers (Figs. 3, 4). These results suggested that exclusive isolation of the cis compounds 5 is the result of equilibration.

Conclusions.-Our earlier ${ }^{2}$ and present results concerning the ring transformations of amino-1,2,4-oxadiazoles indicate that with the Boulton-Katritzky second type scheme ${ }^{3}$ it is not the saturation or unsaturation of the side chain but the delocalized π-electron system of the parent ring which is important for the success of these ring transformations. With oxadiazoles the nucleophilic attack of the side chain nitrogen is

Table 2 Analytical and spectral data for the oxadiazolines $\mathbf{8 b}-\mathbf{d}$ and for the pyrimidines $9 \mathbf{b}-\mathbf{d}$

Compound (Formula)	Yield(\%)	M.p. $/{ }^{\circ} \mathrm{C}$	Found (\%) (Required)			$\begin{aligned} & v_{\max }(\mathrm{KBr}) / \\ & \mathrm{mm}^{-1} \end{aligned}$	$\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$	$\delta_{\text {C }}\left(25 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
			C	H	N			
$\begin{aligned} & \mathbf{8 b} \\ & \left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}\right) \end{aligned}$	73	106-108	66.5	6.6	11.9	3405,	3.69 ($2 \mathrm{H}, \mathrm{s}$, benzyl)	92.59 (C-5)
			(66.8)	(6.8)	(12.3)	3395	6.28 (1 H, s, 5-H)	157.17 (C-3)
8 c	64	80-83	58.1	4.6	12.3	3415,	3.70 ($2 \mathrm{H}, \mathrm{s}$, benzyl)	91.94 (C-5)
$\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}\right)$			(58.3)	(4.9)	(12.0)	3400	6.28 (1 H, s, 5-H)	156.52 (C-3)
8d	58	95-97	57.95	4.8	12.1	3403,	3.79 ($2 \mathrm{H}, \mathrm{s}$, benzyl)	89.16 (C-5)
$\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}\right)$			(58.3)	(4.9)	(12.0)	3390	6.68 (1 H, s, 5-H)	156.44 (C-3)
$9 b$	74	85-88	66.9	6.9	12.0	3395,	3.17 (1 H, d, benzyl)	74.99 (C-2)
$\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$			(66.8)	(6.8)	(12.3)	1663,	3.70 (1 H, d, benzyl)	150.45 (C-4)
$\begin{aligned} & \text { 9c } \\ & \left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}\right) \end{aligned}$	84	69-72	58.4	4.8	11.9	3410,	3.31 (1 H, d, benzyl)	74.56 (C-2)
			(58.3)	(4.9)	(12.0)	1670,	3.75 (1 H, d, benzyl)	150.21 (C-4)
						918	4.76 (1 H, s, 2-H)	
$\begin{aligned} & \text { 9d } \\ & \left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}\right) \end{aligned}$	80	144-146	57.8	4.7	11.9	3400 ,	3.76 (1 H, d, benzyl)	72.05 (C-2)
			(58.3)	(4.9)	(12.0)	1640,	3.85 (1 H, d, benzyl)	150.50 (C-4)
						900	5.44 (1 H, s, 2-H)	

Fig. 4 PLUTO diagram of the two independent molecules A and B of 17
directed against $N(2)$ of the ring resulting in an azole-azole rearrangement, while with dihydro-oxadiazoles this attack is directed against the most positive atom i.e. $\mathrm{C}(5)$ and a novel azole-azine ring transformation takes place. This work is a continuation of our studies in the chemistry of amino-amide oximes. ${ }^{1.2,4,6-9}$

Experimental

IR Spectra were recorded on a Zeiss Specord M-80. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{15}$ N NMR spectroscopy was performed using a JEOL FX-100 instrument, J values are given in Hz .

3-(2-Benzylaminoethyl)-5-phenyl-4,5-dihydro-1,2,4-oxa-
diazole 8a.-To the solution of $5 \mathbf{a}^{6}(1.40 \mathrm{~g}, 5 \mathrm{mmol})$ in methanol ($60 \mathrm{~cm}^{3}$) was added sodium borohydride ($0.19 \mathrm{~g}, 5 \mathrm{mmol}$) at $12-15^{\circ} \mathrm{C}$ over 10 min . After 30 min stirring at $12-15^{\circ} \mathrm{C}$ the mixture was poured into ice-water $\left(60 \mathrm{~cm}^{3}\right)$ and extracted with cold chloroform ($60 \mathrm{~cm}^{3}$). The extract was dried and evaporated under reduced pressure at $20-25^{\circ} \mathrm{C}$. The residue was dissolved in ether ($15 \mathrm{~cm}^{3}$) and after refrigerating it for one day the white crystals were separated ($0.72 \mathrm{~g}, 51 \%$), m.p. $61-63^{\circ} \mathrm{C}$ (Found: C, $72.85 ; \mathrm{H}, 6.8 ; \mathrm{N}, 15.0 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 6.8 ; \mathrm{N}$, 14.9%; ; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3310$ and $3300(\mathrm{NH}) ; \delta_{\mathrm{H}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.50\left(2 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2}\right), 2.90\left(2 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2}\right), 3.76(2 \mathrm{H}, \mathrm{s}$, CH_{2} benzyl), $6.34(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $7.1-7.6(11 \mathrm{H}, \mathrm{m}, \mathrm{NH}+10$ $\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(25 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.54\left(\mathrm{CH}_{2}\right), 46.04\left(\mathrm{CH}_{2}\right), 53.71\left(\mathrm{CH}_{2}\right.$ benzyl), 92.73 (C-5), $126.45(-\mathrm{C}=), 127.30(-\mathrm{CH}=), 127.86$ $(-\mathrm{CH}=), 128.18(-\mathrm{CH}=), 128.65(-\mathrm{CH}=), 129.35(-\mathrm{CH}=), 139.47$ (C-1', phenyl), 139.97 (C-1", phenyl) and 156.64 (C-3).

Table 3 Crystal data

	Compound		
Parameter	9 a	16	17
Formulae	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot$	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$		
M_{w}	336.29	369.47	369.47
a / \AA	$32.312(4)$	$17.630(1)$	$5.947(1)$
b / \AA	$5.757(1)$	$9.124(1)$	$10.193(1)$
c / \AA	$18.677(2)$	$12.742(1)$	$17.533(2)$
$\alpha /{ }^{\circ}$			$96.14(1)$
$\beta /{ }^{\circ}$	$90.47(2)$	$100.51(1)$	$99.77(1)$
$\gamma /{ }^{\circ}$			$107.00(1)$
V / \AA^{3}	3479.6	2015.2	987.8
$\mathrm{Space} \mathrm{group}^{\circ}$	$C 2 / c$	$C \mathrm{c}$	$P 1$
Z	8	4	2
$D_{\mathrm{x}} / \mathrm{g} \mathrm{cm}^{-3}$	1.40	1.22	1.24
$N_{\text {tot }}$	3778	2014	4084
$N_{\text {obs }}$	1739	1402	3675
R	$[I>3 \sigma(I)]$	$[I>3 \sigma(I)]$	$[I>3 \sigma(I)]$
R	0.064	0.069	0.050
R_{w}	0.072	0.060	0.046
p	0.001	0.01	0.01
$2 \theta_{\text {max }} / /^{\circ}$	54	150	150
$\lambda / \mathrm{A}^{\circ}$	0.7107	1.5418	1.5418
μ / cm^{-1}	0.54	5.4	5.6

3,5-Disubstituted-4,5-dihydro-1,2,4-oxadiazoles $\quad \mathbf{8 b}$-d.-
Reduction of oxadiazolo[4,3-c]pyrimidines $\mathbf{5 b - d}{ }^{6}$ was carried out as described for 5 a , however, at $3-8^{\circ} \mathrm{C}$ in the case of 5 b , and with twice the amount of sodium borohydride at $20-22^{\circ} \mathrm{C}$ for 5d. Yields, melting points, analytical and spectral data for $\mathbf{8 b - d}$ are given in Table 2.

1-Benzyl-4-hydroxyimino-2-phenylhexahydropyrimidine 9a.(a) To a solution of $5 \mathbf{a}^{6}(2.79 \mathrm{~g}, 10 \mathrm{mmol})$ in methanol $\left(80 \mathrm{~cm}^{3}\right)$ was added sodium borohydride ($0.38 \mathrm{~g}, 10 \mathrm{mmol}$) at $20-25^{\circ} \mathrm{C}$ over 30 min . After stirring for 1 h , ice-water $\left(80 \mathrm{~cm}^{3}\right)$ was added and the crystals were separated ($2.6 \mathrm{~g}, 92 \%$), m.p. $140-142^{\circ} \mathrm{C}$ (from EtOH).
(b) Compound 8a ($280 \mathrm{mg}, 1 \mathrm{mmol}$) was heated in a glass tube at $80^{\circ} \mathrm{C}$ for 2 h . The product was crystallized from ethanol (250 $\mathrm{mg}, 89 \%$), m.p. $140-142^{\circ} \mathrm{C}$ (Found: C, 72.6 ; H, 6.7; N, 14.85. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ requires C, $72.6 ; \mathrm{H}, 6.8 ; \mathrm{N}, 14.9 \%$); $\boldsymbol{v}_{\text {max }}(\mathrm{KBr})$ / $\mathrm{cm}^{-1} 3380(\mathrm{NH}), 1658$ (amide) and $900(=\mathrm{N}-\mathrm{O}) ; \delta_{\mathrm{H}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.44(3 \mathrm{H}, \mathrm{m}, 5-, 6-, 6-\mathrm{H}), 3.0(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{d}, J$ 13, CH_{2} benzyl), $3.81\left(1 \mathrm{H}, \mathrm{d}, J 13, \mathrm{CH}_{2}\right.$ benzyl), $4.79(1 \mathrm{H}, \mathrm{s}$, 2-H), $5.67(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 7.1-7.6(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$ and $7.5(1 \mathrm{H}, \mathrm{v}$ $\mathrm{br},=\mathrm{N}-\mathrm{OH}) ; \delta_{\mathrm{C}}\left(25 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.46$ (C-5), 45.49 (C-6), $55.84\left(\mathrm{CH}_{2}\right.$ benzyl), $127.16(-\mathrm{CH}=), 127.80(-\mathrm{CH}=), 128.30$

Table 4 Positional parameters and their esds (in parentheses) for compound 9a. Atoms with asterisks have a multiplicity of 0.5

Atom	x	y	z
$\mathrm{~N}(1)$	$0.8753(1)$	$0.3622(6)$	$0.0003(2)$
$\mathrm{C}(2)$	$0.9030(1)$	$0.3456(9)$	$0.0619(2)$
$\mathrm{N}(3)$	$0.9325(1)$	$0.5364(8)$	$0.0578(2)$
$\mathrm{C}(4)$	$0.9442(1)$	$0.6407(9)$	$-0.0024(2)$
$\mathrm{C}(5)$	$0.9227(2)$	$0.583(1)$	$-0.0714(3)$
$\mathrm{C}(6)$	$0.8996(1)$	$0.3530(9)$	$-0.0656(2)$
$\mathrm{C}(7)$	$0.8445(1)$	$0.1750(8)$	$0.0003(2)$
$\mathrm{C}(8)$	$0.8092(1)$	$0.2291(8)$	$-0.0514(2)$
$\mathrm{C}(9)$	$0.7978(2)$	$0.067(1)$	$-0.1034(3)$
$\mathrm{C}(10)$	$0.7646(2)$	$0.118(1)$	$-0.1492(3)$
$\mathrm{C}(11)$	$0.7429(2)$	$0.323(1)$	$-0.1434(3)$
$\mathrm{C}(12)$	$0.7541(2)$	$0.477(1)$	$-0.0916(3)$
$\mathrm{C}(13)$	$0.7869(1)$	$0.4323(9)$	$-0.0459(3)$
$\mathrm{C}(14)$	$0.8804(1)$	$0.3697(8)$	$0.1320(2)$
$\mathrm{C}(15)$	$0.8565(1)$	$0.5633(9)$	$0.1467(3)$
$\mathrm{C}(16)$	$0.8370(2)$	$0.589(1)$	$0.2121(3)$
$\mathrm{C}(17)$	$0.8417(2)$	$0.419(1)$	$0.2637(3)$
$\mathrm{C}(18)$	$0.8651(2)$	$0.229(1)$	$0.2502(3)$
$\mathrm{C}(19)$	$0.8848(1)$	$0.2027(9)$	$0.1842(3)$
$\mathrm{N}(20)$	$0.9716(1)$	$0.7984(8)$	$-0.0041(2)$
$\mathrm{O}(21)$	$0.9871(1)$	$0.8467(8)$	$0.0665(2)$
$\mathrm{Cl}(1)$	$-0.0445(1)$	$-0.3093(3)$	$0.2499(1)$
$\mathrm{Cl}(2)^{*}$	$-0.0049(2)$	$0.1180(9)$	$0.2692(3)$
$\mathrm{C}(25)^{*}$	$-0.0002(6)$	$-0.162(2)$	$0.2741(6)$
$\mathrm{C}(26)^{*}$	$0.014(1)$	$0.101(4)$	$0.195(1)$

Table 5 Positional parameters and their esds (in parentheses) for compound 16

		y	z
Atom	x		
$\mathrm{~N}(1)$	$-0.0819(3)$	$-0.5962(7)$	$-0.0830(5)$
$\mathrm{O}(2)$	-0.1560	$-0.6108(5)$	-0.1536
$\mathrm{C}(3)$	$-0.2050(4)$	$-0.4866(8)$	$-0.1351(5)$
$\mathrm{N}(4)$	$-0.1513(3)$	$-0.3923(6)$	$-0.0653(4)$
$\mathrm{C}(5)$	$-0.1803(3)$	$-0.3067(7)$	$0.0170(5)$
$\mathrm{N}(6)$	$-0.1153(3)$	$-0.2225(6)$	$0.0746(4)$
$\mathrm{C}(7)$	$-0.0549(4)$	$-0.3242(8)$	$0.1268(5)$
$\mathrm{C}(8)$	$-0.0206(4)$	$-0.4060(9)$	$0.0417(5)$
$\mathrm{C}(8 \mathrm{~A})$	$-0.0847(4)$	$-0.4721(8)$	$-0.0373(5)$
$\mathrm{C}(10)$	$-0.2384(4)$	$-0.4186(7)$	$-0.2406(5)$
$\mathrm{C}(11)$	$-0.3175(4)$	$-0.4265(9)$	$-0.2774(6)$
$\mathrm{C}(12)$	$-0.3492(4)$	$-0.362(1)$	$-0.3735(7)$
$\mathrm{C}(13)$	$-0.3041(5)$	$-0.289(1)$	$-0.4327(6)$
$\mathrm{C}(14)$	$-0.2248(5)$	$-0.281(1)$	$-0.3977(6)$
$\mathrm{C}(15)$	$-0.1926(4)$	$-0.3468(8)$	$-0.3015(6)$
$\mathrm{C}(16)$	$-0.2466(3)$	$-0.2118(7)$	$-0.0375(5)$
$\mathrm{C}(17)$	$-0.3210(4)$	$-0.2428(8)$	$-0.0220(6)$
$\mathrm{C}(18)$	$-0.3824(4)$	$-0.165(1)$	$-0.0764(7)$
$\mathrm{C}(19)$	$-0.3709(4)$	$-0.061(1)$	$-0.1487(7)$
$\mathrm{C}(20)$	$-0.2978(5)$	$-0.026(1)$	$-0.1635(7)$
$\mathrm{C}(21)$	$-0.2355(4)$	$-0.1037(8)$	$-0.1089(6)$
$\mathrm{C}(22)$	$-0.1420(4)$	$-0.1272(8)$	$0.1561(5)$
$\mathrm{C}(23)$	$-0.0773(4)$	$-0.0232(7)$	$0.2015(5)$
$\mathrm{C}(24)$	$-0.0485(4)$	$0.0784(8($	$0.1382(6)$
$\mathrm{C}(25)$	$0.0086(5)$	$0.176(1)$	$0.1846(8)$
$\mathrm{C}(26)$	$0.0357(5)$	$0.1705(9)$	$0.2938(8)$
$\mathrm{C}(27)$	$0.0088(5)$	$0.071(1)$	$0.3520(7)$
$\mathrm{C}(28)$	$-0.0479(5)$	$-0.0265(9)$	$0.3109(6)$

$(-\mathrm{CH}=), 128.56$ ($-\mathrm{CH}=$), 128.68 ($-\mathrm{CH}=$), 138.39 ($\mathrm{C}-1^{\prime}$, phenyl), 141.11 (C-1", phenyl) and 150.32 (C-4); $\delta_{\mathrm{N}}\left(10 \mathrm{MHz}\right.$; ${ }^{2} \mathrm{H}_{6}$]DMSO) 52.1 ($\mathrm{s}, \mathrm{N}-1$), $79.4(\mathrm{~d}, \mathrm{~N}-2)$ and $280.3(\mathrm{~s},=\mathrm{N}-\mathrm{OH})$.

1,2-Disubstituted-4-hydroximinohexahydropyrimidines 9b-d. -Compounds 5b-d ${ }^{6}$ were reduced, as described for 9 a [method (a)], however, with twice the amount of sodium borohydride for 9 d and the solution was left standing for one day at $20-25^{\circ} \mathrm{C}$ before work-up. Yields, melting points, analytical and spectral data for $9 \mathrm{~b}-\mathrm{d}$ are compiled in Table 2.

Table 6 Positional parameters and their esds (in parentheses) for compound 17

Atom	x	y	z
N(1)	-0.1735(5)	0.6528(3)	0.0763(2)
O(2)	-0.2219(0)	0.7542(0)	0.0293(0)
C(3)	-0.0185(6)	0.8805(4)	0.0493(2)
N(4)	0.1251(5)	0.8542(3)	0.1189(1)
C(5)	0.3823(5)	0.9313(3)	0.1472(2)
N(6)	0.4611 (5)	0.8794(3)	0.2197(1)
C(7)	0.4152(6)	0.7281(3)	0.2018(2)
C(8)	0.1468(7)	0.6548(3)	0.1843(2)
C(8a)	0.0267(6)	0.7171(3)	0.1239(2)
C(10)	0.1080(6)	0.9062(3)	-0.0187(2)
C(11)	0.2183(8)	0.8145(4)	-0.0469(2)
C(12)	0.3463(9)	0.8463(5)	-0.1054(3)
C(13)	0.3634(9)	0.9681(5)	-0.1352(2)
C(14)	0.2518(9)	1.0575(5)	-0.1087(2)
C(15)	0.1232(8)	1.0262(4)	-0.0497(2)
C(16)	0.4199(6)	1.0853(3)	0.1632(2)
C(17)	0.3233(7)	1.1394(4)	0.2203(3)
C(18)	0.3635(8)	1.2823(4)	0.2352(3)
C(19)	0.4968(9)	1.3675(4)	0.1912(3)
C(20)	0.5909(9)	$1.3130(4)$	0.1353(3)
C(21)	0.5528(7)	1.1728(4)	0.1201(2)
C(22)	0.7179(6)	0.9511 (4)	0.2538(2)
C(23)	0.7798(6)	0.9275(3)	0.3369(2)
C(24)	0.6576(6)	0.9643(4)	0.3921(2)
C(25)	0.7145(7)	0.9445(4)	0.4686(2)
C(26)	0.8918(8)	0.8863(5)	0.4921(2)
C(27)	1.0165(8)	0.8516(5)	0.4373(3)
C(28)	0.9611(7)	0.8730(4)	0.3611 (2)
N(1)	0.4793(5)	0.1526(3)	0.5763(2)
$\mathrm{O}\left(2^{\prime}\right)$	0.5842(5)	0.2553(3)	0.5304(1)
C(3')	0.5233(6)	0.3802(4)	0.5491(2)
$\mathrm{N}\left(4^{\prime}\right)$	0.4255(5)	0.3545(3)	0.6192(1)
C(5)	0.2709(6)	0.4302(3)	0.6475(2)
N(6)	0.2148(5)	0.3795(2)	0.7194(1)
C(7')	0.0915(6)	0.2288(3)	0.7023(2)
C(8)	0.2681(7)	0.1547(3)	0.6847(2)
C(8a')	0.3897(6)	0.2175(3)	0.6234(2)
$\mathrm{C}\left(10^{\prime}\right)$	0.3557(6)	0.4059(3)	0.4817(2)
C(11)	0.4303(7)	0.5264(4)	0.4501(2)
$\mathrm{C}\left(12^{\prime}\right)$	0.2737(9)	0.5577(4)	0.3925(2)
C(13')	0.0451(9)	0.4666(5)	0.3655(3)
C(14')	-0.0306(9)	0.3464(5)	0.3938(3)
C(15')	0.1261(8)	0.3150(4)	0.4532(2)
$\mathrm{C}\left(16^{\prime}\right)$	0.4045(6)	0.5848(3)	0.6635(2)
C(17')	0.6127(7)	0.6398(4)	0.7206 (3)
$\mathrm{C}\left(18{ }^{\prime}\right)$	0.7303(8)	0.7819(5)	0.7354(3)
C(19')	0.6389(9)	0.8673(4)	0.6918(3)
C(20')	0.4364(9)	0.8142(4)	0.6354(3)
C(21)	0.3156(7)	0.6733(4)	0.6201(2)
C(22')	0.0619(6)	0.4497(3)	0.7541(2)
C(23')	0.0594(6)	0.4267(3)	0.8364(2)
C(24')	-0.1517(7)	0.3714(5)	0.8602(2)
C(25)	-0.1525(8)	0.3501(5)	0.9373(2)
C(26)	0.0613(8)	0.3855(5)	$0.9915(2)$
C(27')	0.2754(7)	0.4436(4)	0.9691(2)
C(28')	0.2744(6)	0.4638(4)	0.8919(2)

cis- and trans-6-Benzyl-3,5-diphenyl-5,6,7,8-tetrahydro-3H[$1,2,4$]oxadiazolo[$4,3-c]$ pyrimidines 16 and 17.-Compound 9 a ($2.8 \mathrm{~g}, 10 \mathrm{mmol}$), benzaldehyde $(1.28 \mathrm{~g}, 12 \mathrm{mmol})$ and toluene ($40 \mathrm{~cm}^{3}$) were heated with stirring in a sealed vessel at $98^{\circ} \mathrm{C}$ for 4 h . The toluene was evaporated under reduced pressure to give a $1: 1$ mixture of 16 and 17 in nearly quantitative yield. Chromatography on silica gel with diethyl ether as eluent yielded $16(1.03 \mathrm{~g}, 28 \%)$ and $17(0.81 \mathrm{~g}, 22 \%)$.

16: m.p. 126-129 ${ }^{\circ} \mathrm{C}$ (diethyl ether) (Found: C, 78.1; H, 6.3; N, 11.5. $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 6.3 ; \mathrm{N}, 11.4 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1638(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.2-2.8(3 \mathrm{H}$, $\mathrm{m}, 7-, 7-, 8-\mathrm{H}), 3.01\left(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{CH}_{2}\right.$ benzyl), $3.0-3.2(1 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}), 3.61\left(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{CH}_{2}\right.$ benzyl), $4.31(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$,
$5.78(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $6.9-7.2(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(25 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 21.41 (C-8), 47.53 (C-7), 55.37 (CH_{2} benzyl), 84.16 (C-5), 98.02 (C-3), 127.10 (-CH=), 127.51 ($-\mathrm{CH}=$), $127.65(-\mathrm{CH}=), 127.92$ ($-\mathrm{CH}=$), 128.24 ($-\mathrm{CH}=$), 128.35 ($-\mathrm{CH}=$), 128.47 ($-\mathrm{CH}=$), 128.76 (-CH=), 128.97 (-CH=), 136.60 (C-1', phenyl), 137.66 ($\mathrm{C}-1^{\prime \prime}$, phenyl), 138.04 ($\mathrm{C}-1^{\prime \prime \prime}$, phenyl) and 154.07 (C-8a).

17: m.p. $107-109^{\circ} \mathrm{C}$ (EtOH) (Found: C, 77.9; H, 6.2; N, 11.5. $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ requires $\left.\mathrm{C}, 78.0 ; \mathrm{H}, 6.3 ; \mathrm{N}, 11.4 \%\right) ; \nu_{\text {max }}(\mathrm{KBr})$ / $\mathrm{cm}^{-1} 1638(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.4-3.2(4 \mathrm{H}, \mathrm{m}, 7-$, $8-\mathrm{CH}_{2}$), $3.49\left(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{CH}_{2}\right.$ benzyl), $3.68(1 \mathrm{H}, \mathrm{d}, J 13.5$, CH_{2} benzyl), $4.51(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.93(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $7.0-7.5(15$ $\mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(25 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.22$ (C-8), 42.09 (C-7), 55.81 $\left(\mathrm{CH}_{2}\right.$ benzyl), $93.40(\mathrm{C}-3), 127.16(-\mathrm{CH}=), 127.36(-\mathrm{CH}=)$, $128.21(-\mathrm{CH}=), 128.33(-\mathrm{CH}=), 128.56(-\mathrm{CH}=), 128.71(-\mathrm{CH}=)$, 129.61 ($-\mathrm{CH}=$), 136.78 ($\mathrm{C}-1^{\prime}$, phenyl), 137.54 ($\mathrm{C}-1^{\prime \prime}$, phenyl), 137.77 (C-1"', phenyl) and 151.05 (C-8a).

X-Ray Crystal Structure Analyses.-Crystals of 9a, 16 and 17 were grown from dichloromethane, diethyl ether, and ethanol respectively. Crystal data are listed in Table 3. Data were collected on an Enraf-Nonius CAD-4 diffractometer at the Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest.

The structures were solved through the application of the MULTAN 84 program. An empirical absorption correction was applied to all reflections, using the DIFABS ${ }^{11}$ program. Hydrogen atoms with known positions were generated except for $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ atoms which were taken from difference Fourier calculations. The fractional coordinates with their esd values are given in Tables 4, 5 and 6, respectively. A partially disordered dichloromethane group was found in structure 9a. Full lists of bond lengths, bond angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.*

Structure determinations were carried out on a PDP 11/34 minicomputer by means of the Enraf-Nonius SDP program package with local modifications. The weighting scheme was $w=1 /\left[\sigma^{2}\left(F_{0}\right)+p F^{2}\right]$.

Calculations of electronic charges for oxadiazole 1 and dihydro-oxadiazole 6 . All calculations have been made by the CNDO ${ }^{9}$ program, QCPE No. 240 for IBM-PC (Modified by
J. D. Bowden and G. S. Owen, Atlanta, Georgia). The geometries used for the calculations are based on the X-ray measurements of molecule $1\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}\right){ }^{2 d}$ and $6\left(\mathrm{R}^{1}=\right.$ $\left.\mathrm{R}^{2}=\mathrm{PhCH}=\mathrm{CH}\right) .{ }^{6}$ Hydrogen atoms were generated with standard bond distances and angles.

References

1 Part 3, D. Korbonits, K. Simon and P. Kolonits, Chem. Ber., 1991, 124, 111.
2 (a) D. Korbonits, E. M. Bakó and K. Horváth, J. Chem. Res. (S), 1979, 64; 1979, 0801; (b) I. Bata, G. Héja, P. Kiss and D. Korbonits, J. Chem. Soc., Perkin Trans. 1, 1986, 9; (c) D. Korbonits, I. KanzelSzvoboda and K. Horváth, J. Chem. Soc., Perkin Trans. 1, 1982, 759; (d) K. Horváth, D. Korbonits, G. Náray-Szabó and K. Simon, J. Mol. Struct. (Theochem.), 1986, 136, 215.
3 A. J. Boulton, A. R. Katritzky and A. Majid Hamid, J. Chem. Soc. (C), 1967, 2005; A. J. Boulton, in Lectures in Heterocyclic Chemistry, vol. 2, 1974, p. 45; A. Sultan Afridi, A. R. Katritzky and C. A. Ramsden, J. Chem. Soc., Perkin Trans. 1, 1976, 315; M. Ruccia, N. Vivona and D. Spinelli, in Advances in Heterocyclic Chemistry, eds. A. R. Katritzky and A. J. Boulton, Academic Press, New York, 1981, vol. 29, p. 141.
4 D. Korbonits, K. Horváth, Cs. Gönczi and J. Tamás, Acta Chim. Acad. Sci. Hung., 1984, 117, 239.
5 V. Frenna, S. Busceni, D. Spinelli and G. Consiglio, J. Chem. Soc., Perkin Trans. 2, 1990, 215, and references cited therein.
6 D. Korbonits, E. Tóbiás-Héja, K. Simon and P. Kolonits, Chem. Ber., 1991, 124, 2065.
7 D. Korbonits, P. Kiss, K. Simon and P. Kolonits, Chem. Ber., 1984, 117, 3183; D. Korbonits, P. Kiss, I. Bata, G. Héja, K. Simon and P. Kolonits, Chem. Ber., 1987, 120, 1039.

8 (a) D. Korbonits, K. Simon and P. Kolonits, Tetrahedron Lett., 1983, 24, 5763; (b) D. Korbonits and P. Kolonits, J. Chem. Soc., Perkin Trans. 1, 1986, 2163; D. Korbonits and P. Kolonits, J. Chem. Res. (S), 1988, 109; (M), 1988, 1652; D. Korbonits, I. Kanzel-Szvoboda, Cs. Gönczi, K. Simon and P. Kolonits, Chem. Ber., 1989, 122, 1107; D. Korbonits and P. Kolonits, Acta Chim. Acad. Sci. Hung., 1990, 127, 795; D. Korbonits, E. Tóbiás-Héja and P. Kolonits, Chem. Ber., 1991, 124, 1199.
9 J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970.
10 E. M. Bakó, K. Horváth, E. Pálosi and D. Korbonits, Chem. Ber., 1988, 121, 723.
11 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.

Paper 2/03683E
Received 13th July 1992
Accepted 17th August 1992

[^0]: \dagger The role of the side chain in similar rearrangements is discussed from a different point of view by Frenna and co-workers. ${ }^{5}$

[^1]: * The importance of substituents is reflected by the fact that the dihydro-1,2,4-oxadiazoles with the less nucleophilic anilinoethyl side chain failed to rearrange under the conditions applied in our experiments. ${ }^{8 a}$
 \dagger Earlier, in the case of the hydrolytic acyl migration of 3-(1-aminopropyl)-5-substituted-1,2,4-oxadiazoles, we suggested that it proceeded via an attack of the amino nitrogen at $\mathrm{C}(5) .{ }^{10}$

